Definitions and key facts for section 2.2

A $n \times n$ matrix A is said to be **invertible** if there is a $n \times n$ matrix C such that

CA = I and AC = I.

In this case, C is a unique matrix which we call the **inverse** of A and denote by A^{-1} .

 $AA^{-1} = I = A^{-1}A$

We call a matrix which is *not* invertible a **singular matrix**. Thus an invertible matrix is a **nonsingular matrix**.

Computing 2 × 2 **inverses**: Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

If ad - bc = 0, then A is not invertible.

We call the quantity ad - bc the **determinant** of A and write

 $\det A = ad - bc.$

Facts about inverse matrices Suppose A is an invertible $n \times n$ matrix with inverse A^{-1} , then we can conclude the following.

- 1. For each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.
- 2. A^{-1} is also invertible and $(A^{-1})^{-1} = A$.
- 3. The transpose A^T is invertible, and the inverse of A^T is the transpose of A^{-1} . That is

$$(A^T)^{-1} = (A^{-1})^T.$$

4. If B is an invertible $n \times n$ matrix, then the product AB is invertible with

$$(AB)^{-1} = B^{-1}A^{-1}.$$

In fact, we can generalize fact 4: any product of invertible matrices is invertible, and the inverse is the product of the inverses in *reverse* order. For example:

$$(ABCD)^{-1} = D^{-1}C^{-1}B^{-1}A^{-1}.$$

Computing A^{-1} for larger matrices

Fact: If A is an invertible $n \times n$ matrix, then A is row equivalent to I_n and in this case, the reduced echelon form of $\begin{bmatrix} A & I_n \end{bmatrix}$ is $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$.