Definitions and key facts for section 2.2

A $n \times n$ matrix A is said to be invertible if there is a $n \times n$ matrix C such that

$$
C A=I \text { and } A C=I
$$

In this case, C is a unique matrix which we call the inverse of A and denote by A^{-1}.

$$
A A^{-1}=I=A^{-1} A
$$

We call a matrix which is not invertible a singular matrix. Thus an invertible matrix is a nonsingular matrix.

Computing 2×2 inverses: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is not invertible.
We call the quantity $a d-b c$ the determinant of A and write

$$
\operatorname{det} A=a d-b c
$$

Facts about inverse matrices Suppose A is an invertible $n \times n$ matrix with inverse A^{-1}, then we can conclude the following.

1. For each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.
2. A^{-1} is also invertible and $\left(A^{-1}\right)^{-1}=A$.
3. The transpose A^{T} is invertible, and the inverse of A^{T} is the transpose of A^{-1}. That is

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

4. If B is an invertible $n \times n$ matrix, then the product $A B$ is invertible with

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

In fact, we can generalize fact 4: any product of invertible matrices is invertible, and the inverse is the product of the inverses in reverse order. For example:

$$
(A B C D)^{-1}=D^{-1} C^{-1} B^{-1} A^{-1}
$$

Computing A^{-1} for larger matrices

Fact: If A is an invertible $n \times n$ matrix, then A is row equivalent to I_{n} and in this case, the reduced echelon form of $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$ is $\left[\begin{array}{ll}I_{n} & A^{-1}\end{array}\right]$.

